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Abstract. We report a microscopic derivation of the parametric representation of the 
equation of state for an Ising-like system by means of the skeleton expansion technique. 
Such a representation explicitly describes the crossover behaviour from the small correla- 
tion length region to the critical region. The Gaussian-king crossover is obtained at 
criticality. The derivation is based on differential relations that connect natural ther- 
modynamical variables with the parameters defining the representation. Differentiability 
properties are checked in the small c limit. 

1. Introduction 

The parametric representation of the equation of state has at least two main advantages. 
The first of these is to verify the Griffiths analyticity requirements (Griffiths 1967); the 
second is to introduce new thermodynamic variables 8 and R associated respectively 
with the regular and singular behaviour around the critical point. The simplest version 
of the parametric equation of state, the ‘linear model’ (Shofield 1969a, b, Ho and 
Litster 1969), has been criticized from many points of view. 

A theoretical check of such a model has been performed by several methods. It has 
been shown by series expansion (Gaunt and Domb 1970) that the model is not correct in 
two and three dimensions even for Ising systems. By E expansion ( E  = 4 - d where d is 
the space dimensionality), deviations from the linear model have been calculated to the 
order of e2 (BrCzin et a1 1973); in particular its failure for Ising systems has been 
demonstrated up to O(e3) (Wallace and Zia 1974). In addition the extension for an 
isotropic system with n a 2 (where n is the number of internal degrees of freedom of the 
spin density) is obscure because of the expected singularity near the coexistence curve. 
Several inadequacies have been expressed even in the phenomenological analysis 
(Barmatz et al 1975) and a possible generalization of the parametric formulation of 
scaling has been proposed which, besides suggesting possible forms for correction 
terms, gives the possibility of describing the non-rectilinear behaviour of the diameter 
of the coexistence curve (Green er a1 1971). 

All this might be clarified by introducing the parametric representation by a direct 
microscopic approach which gives the linear model as a first step of a systematic 
approximation scheme. This is the first aim of our paper. 
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The results obtained to the leading order in E will be identified in the asymptotic 
critical region with the most recent derivation of the equation of state based on the 
differential renormalization group (Rudnick and Nelson 1976, Nelson 1976). These 
results are an improvement of the first ‘naive’ derivation (BrCzin et al 1973, Avdeeva 
and Migdal 1972, Br6zin et al 1976) because of the explicit agreement with the 
Griffiths conditions for large x (where x = t/q5”’, t is the reduced temperature 
t = (T- T,)/T,, q5 is the average value of the order parameter and /3 is the critical 
exponent describing the coexistive curve). Our approach actually gives a gener- 
alization of the equation of state valid even outside the critical region. As far as we 
consider the dependence on the reduced temperature r, the magnetic field h and the 
strength of the quartic coupling g between fluctuations, in various asymptotic regimes, 
we recover in addition to the critical behaviour the tricritical-like and the small 
correlation length regimes. The results in the zero magnetic field case are in agree- 
ment, to the leading order in E ,  with previous works on the crossover between 
critical and tricritical-like behaviour (Rudnick and Nelson 1976, Lawrie 1976, Bruce 
and Wallace 1976). 

The first problem we will deal with is a methodological matter: how to define on 
microscopic grounds the parametric representation of ‘natural’ variables, i.e. the 
average value of the order parameter 4 and the temperature r, in terms of ‘intrinsic’ 
parameters R and e, with a fixed bare coupling constant g. 

In a previous work (BouchC et al1975) it has been shown that, in the presence of an 
external field, a suitable version of the skeleton expansion technique (de Pasquale and 
Tombesi 1972, Tsuneto and Abrahams 1973, Ginzburg 1974) allows the introduction 
of differential relations between the natural thermodynamic variables and two effective 
coupling constants U and U associated with the structure of the skeleton diagrams. In 
that work it has been shown that such a set of differential relations, when integrated 
along particular paths, generates asymptotic solutions near the critical point that look 
like the linear model approximation of the parametric equation of state and, to the first 
order in E ,  are in agreement with BrCzin et aZ(l973). 

In the present work we shall investigate the general solution of the same set of 
equations which is consistent with a prescribed behaviour near the infinite Gaussian 
fixed point (Nicoll et al 1976) (U = 0, U = 0, g fixed), i.e. the asymptotic region of 
vanishingly small correlation length. The point is to check the differentiability of the 
natural thermodynamic variables with respect to the intrinsic variables U and U. Such a 
differentiability can be verified in the whole range, between the small correlation length 
regime and the critical region, in the context of a small E limit. We emphasize that in the 
present work the e limit concept turns out to be useful in order to check a qualitative 
aspect of the theory. It is straightforward to verify that the one-loop skeleton model 
(BouchC et al 1975) verifies the differentiability property only to the leading order in E .  

Further steps in the skeleton expansion would lead to verification of differentiability to 
orders next to the leading one. We shall confine ourselves to a discussion of the results 
of the first step. The solution we obtain will depend on the bare coupling constant g 
which comes out as a boundary condition on the differential equation near the infinite 
Gaussian fixed point. 

To discuss the tricritical point we must allow both t and g to be small independently. 
We will see that for vanishingly small g our generalized parametric equation will 
predict a finite Gaussian fixed point (U = 0, U = 0 and g = 0) which is believed to govern 
the tricritical phenomena. As a consequence we will be able to discuss the crossover 
between the critical and the tricritical behaviour in the presence of the field h. 
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2. Themodel 

We introduce a slightly modified version of the usual Landau-Ginzburg-Wilson 
(Wilson and Kogut 1974) model for the Ising system. We find it convenient to 
introduce, by a dummy functional integration (Halperin et a1 1974, Coleman et a1 
1974), a new field U which describes weak fluctuations, i.e. energy fluctuations, of the 
system. Such a field is coupled with an external field J that has the physical meaning of 
temperature. The strong fluctuations, i.e. the order parameter fluctuations, are 
described by the field I,!I coupled with the external magnetic field h. The partition 
functional is 

(2.1) 

The one-particle irreducible Green functions or vertices, are associated with the 
functional r{4,J) obtained from the partition functional by means of a Legendre 
transformation 

where 4(x)  is the average value of the field + ( x )  defined also as 

4(x)  = (8 ln Z{h, J)I8h(x)),. 

rn,rn{4, J) = S"+'"r{4, 4/84" SJ". 

(2.3) 

(2.4) 

The vertices are defined as 

The one-loop skeleton model is extensively discussed by BouchC et a1 (1975), so we 
report here only the basic definitions and the equations of interest. 

The dimensionless coupling constants U and U are defined by 

(2.5) -[l+(c/2)1. = r4,0(rz,o)-c/2i3; 0 = (r3,0)2(r2,0) 13 

where r4.0 and f3 .0  are respectively the Fourier transforms of the four- and three-leg 
vertices calculated at zero external momenta, r2,0 is the Fourier transform of the inverse 
of the order parameter-order parameter correlation function at vanishing external 
momenta and i3 = ( 2 ~ ) - ~  5 ddy(l + The equations defining the model are those 
following (BouchC et a1 1975): 

+ [ ( 1 + i) (2 + t )  U - 6 4  1 + :) + 3 U '3 U 8, In 172,0 
- (2.6a) 

So= 2u- 1+-  U ~ 3 , l n r ~ , ~ +  ~ U U - 2  1+- U 1+-  U 8,1nr2,0 (2.6b) 

8, r2,0 = (r3.0/r2,0) 84 ; 8J1n r2,0 = (rz,l/r2,0) SJ ( 2 . 6 ~ )  

81nr2,1= 3u- 1+-  U 8, lnI'2,0+ U -  1 + -  U 8JInrz,o (2.6d) 

[ ( 31 [ ( I) 2 - (  3 I 
[ ( 31 [ ( 31 
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srl,l = r2,1 64 +i3r2,1r3,0(r2,0)-~/2 8, in r2,0 
sh = srl,o = r2,0 s,p +rl,l 6~ 

(2 .6e)  

(2 .6f )  

(2 .6g)  = sro,l = rl,l 64 + ro,2sJ 
sr2,0 = r3,0 w + r2,1 SJ (2.6h)  

S r 0 . 2  = ( ~ 2 , 1 ) 2 ~ 3 ( ~ 2 , 0 ) - c ~ 2 ~  In r2.0. (2 .6i)  

All vertices r,,, involved in equations (2.6) are actually the Fourier transforms at zero 
external momenta of the vertices defined in equation (2 .4) .  

A peculiar feature of equations (2 .6)  is the role played by the effective coupling 
constants U and U .  It is indeed possible to invert such equations obtaining differential 
equations that relate the vertices r,,,, the average value of the order parameter 4 and 
the temperature field J to the effective coupling constants U and U .  Such differential 
relations locally define a parametric representation of the natural thermodynamic 
variables q5 and J, associated with the original ensemble, in terms of the new set of 
variables U and U .  Such a representation is meaningful only if the differentiability of the 
original variables with respect to U and v is verified. Equations (2 .6)  verify the 
differentiability requirements in the neighborhood of the origin of the (U, U )  plane to the 
leading order and to the next to leading order in U and U and, in any finite region, to the 
leading order in E ,  

Once the application of the differentiability criterion has selected the consistent 
form of differential equations of various quantities of interest, the integration proce- 
dure introduces an automatic summing up with respect to E ,  

The solution is more conveniently expressed in terms of the variablest U' = u / ( E / ~ ) ,  
8' = u/3u, 4' = ig4, t' = ig(J-J,), h' = -igh and ((T)' = -ig(c+) (for simplicity we drop 
the prime from now on): 

7 G = 3i3g2 4 = G'/'e(1 - u ) ( 1 / c ) - ( 1 / 2 ) u - 1 / € .  

= @ / ' ( I  -$e2)(1 - u ) ( 2 / ~ ) - ( 1 / 3 ) u - 2 / c  ( 2 . 7 ~ )  

(2 .7b)  
h = G3/'@(1 - , g 2 ) ( 1  - u ) ( 3 / E ) - ( 1 / 2 ) u - 3 / E  

(U) = (G~/€/C){(I - l e 2 ) [ c - ( 2 / € ) + ( 2 / € ) ( 1  - u ) - ~ / ~ ] + $ P ( I  - 4 - l l 3 }  

~ ( 1 -  U ) ( 2 / ~ ) - ( 1 / 3 ) U - 2 / ~  

T2.0 = G"/'[(l- U ) / U ] ~ / ~  ( 2 . 7 ~ )  

ro,2 = c- ( 2 1 4  + ( 2 / 4 ( 1 -  (2 .7d)  
where C = I'o,2(0) is the limiting value of the specific heat as t + 00. 

3. Crossover from small correlation length behaviour to criticality 

Equations (2 .7)  define a parametric representation where the dependence on the 
anomaly 0 is the same as predicted by the linear model in the zero E limit$ and the 
singular behaviour is included in the dependence on the variable U. We see that for 
arbitrary 8 and fixed G, as U varies from zero to unity, the inverse susceptibility r2,0 
t The variable t' denotes the reduced temperature. This is easily seen by identifying our partition functional 
equation (2.1) with the usual one through a functional integration on the field cr. 
$ The zero E limit for the linear model can be easily performed by using the E expansion for the exponents. 
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varies from infinity to zero and, correspondingly, the reduced temperature varies from 
infinity to zero. As a consequence we have a description of the asymptotic critical 
region (U = l), the small correlation length region ( U  = 0) and the crossover region. In 
the two previous limits the variable R of the usual linear model can be identified with 
(1 - U)(2/~) - (1 /3)  and U-2/f respectively. In the same limits it is also possible to derive the 
standard expression for the equation of state, 

h = qj6h(x) where x = t/qjl/@ (3.1) 

h(x) = (x +i) p=’  2, 6 = 3  (3.2) 
which is the classical equationof state. In the U = 1 limit we have the coupled equations 

By a suitable resealing of h, 6, and x it is straightforward to identify equations (3.3) with 
equations (3.18) and (3.23) of Nelson (1976). 

In the crossover region between U = 0 and U = 1 it is of physical interest to define 
effective critical exponents (Riedel and Wegner 1974), along the critical isotherm 
(6’ = 2/3) and the coexistence curve (e2 = 1). 

We have 

(3.4a) 

where the dependence of U on t and h is given in the small limit. 
As far as the susceptibility is concerned, i.e. T& we obtain 

(3.5a) 

(3.5b) 

In the limit of vanishingly small external field, i.e. 6 = 0, we obtain for yeff the same 
result as in de Pasquale et a1 (1976). 

The specific heat at constant magnetization is assumed to be proportional to the 
weak fluctuations correlation function 170,2. The singular part of the specific heat can be 
defined by subtracting its limiting value in the asymptotic region of small correlation 
length. As a consequence we define the effective critical exponent aeff: 

(3.6) 

We note that all the scaling laws are verified in the two asymptotic regimes. 
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As a general comment we note that the amplitude of the crossover region is 
governed by the strength of the interaction G. We have the classical behaviour for 
smaller and smaller t as G decreases. In the next section we shall see that G = 0 can be 
associated with the tricritical point. As a consequence this phenomenon can be 
considered as the competition between the tricritical and the critical behaviour in the 
pre-asymptotic region. 

As far as the average value of the energy density field (+ is concerned, we note a 
crossover phenomenon along the coexistence curve from a rectilinear behaviour far 
from the critical point to an enhanced curvature region close to it: 

Near the critical point we have 

(3.9) 

where a = 4 6 .  Such behaviour for the rectilinear diameter has been proposed by 
Ley-Koo and Green (1976) as a manifestation of a crossover to mean-field-like 
behaviour. 

4. Gaussian-Ising crossover 

Although the analysis thus far has been concentrated on critical behaviour and on the 
crossover from criticality to the small correlation length region, it is straightforward to 
treat the crossover from tricritical behaviour as well. To discuss the tricritical point we 
must allow both U and G to tend to zero independently at constant 8. 

First we note from equation ( 2 . 7 ~ )  that the critical line is defined by 

K - G = O  (4.1) 
where K = G/u. 

We have only two asymptotic paths approaching the point K = G = 0 of the (G, K )  
plane which are of physical interest. Any path asymptotically tangent to the K = G line 
leads to the ordinary critical behaviour; any path asymptotically orthogonal to the G 
axis leads to tricritical behaviour. Other paths turn out to describe a trivial free-field 
theory. 

Near the tricritical point it is useful to introduce the new variables 

The tricritical point is associated with infinitely large T, Q, and H. We obtain the 
parametric equations: 

Q, = e[(i - u)/u]'/ '  

H = e(i - e 2 ) [ ( i - ~ ) / ~ ] 3 / 6 .  

T = (1 -$e2)[( 1 - u ) / u ] ~ / '  
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In terms of these new variables we have the ‘classical’ equation of state 

H/@’= X + i ;  X = T / a 2 .  (4.6) 

From equations (4.3) and (4.4) we have 
1 - 

1 + ( T +  S2)‘/* U =  (4.7) 

which together with equation (4.2) can be solved iteratively in the neighbourhood of 
U = 0. The explicit expression of the equation of state (4.6) in terms of the physical 
variables h, t, 4 and G near the tricritical point is given to the first correction as 

(4.8) 

where x = t / r j2 .  

function r0,2 and the inverse susceptibility r2,0 in the same approximation. We obtain 
It is interesting to be explicit about the energy density-energy density correlation 

(4.9) 

(4.10) 

In the h = 0 limit (i.e. x = 00) the result for r2,0 is in agreement with other derivations 
(Rudnick and Nelson 1976, Lawrie 1976, Bruce and Wallace 1976). We note that 
equations (4.9) and (4.10), although valid near the tricritical point, i.e. for small G/t‘/’, 
give a correct extrapolation to the critical behaviour in the large x limit. 

The effective critical exponents associated with the crossover region between critical 
and tricritical behaviour are just the same as those calculated in the preceding section as 
far as the dependence on the reduced variables G/t‘12 and G/h‘I3 is considered. Such 
variables indeed, vary from zero to infinity either for t varying from zero to infinity at 
k e d  G (the crossover between small correlation length region and the critical point) or 
for G/t‘/’ varying from zero (tricritical point) to infinity (critical point). 

5. Conclusion 

As far as the extrapolation of the procedure to the three-dimensional case is concerned, 
we want to note that the expressions of the critical exponents appear as a partial 
summing up of the E expansion and, if the integration procedure is carried on directly in 
the E = 1 case then the structure of the relations is also modified (de Pasquale et a1 
1976). It must be stressed that the validity of such an extrapolation cannot be 
controlled because a qualitative property like the differentiability cannot be checked 
consistently, in any finite region of the ( U ,  U) plane. 

As a general comment we want to emphasize that the predicted universal behaviour 
in the whole range between U = 1 and U = 0 must be considered as an unphysical feature 
due to the model that involves only a quartic interaction among the fluctuations. Such a 
solution, as far as the crossover between the critical and the small correlation length 
regions is concerned, might be of physical interest in order to describe deviatibns from 



406 F de Pasquale and P Tombesi 

the asymptotic behaviour, but as long as a decreasing correlation length is considered 
deviations from the universal behaviour are expected because of higher order interac- 
tions among fluctuations in the Ising systems and also from various kinds of anisotropies 
in real magnetic systems. 

The same criticism applies to our description of the tricritical behaviour. In this case 
it is possible to neglect qb6 interaction for non-negative qb4 interaction, but it amounts to 
a disregard of non-universal corrections in the crossover region. 

It would be of interest to develop the next step of our procedure in order to see 
whether it amounts to just an improvement of the linear model or to an introduction of 
modifications on the structure of the parametric representation. A generalization of the 
parametric formulation of scaling has been proposed (Green eta1 1971) and it would be 
relevant to support it by a microscopic approach. Such an improved approach might be 
also effective to overcome those inadequacies of the linear model analysed for instance 
by Barmatz et a1 (1975). 
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